
Week 4 - Wednesday



 What did we talk about last time?
 Functions







Unix never says "please."

Rob Pike

 It also never says:
 "Thank you"
 "You're welcome"
 "I'm sorry"
 "Are you sure you want to do that?"





 Defining something in terms of itself
 To be useful, the definition must be 

based on progressively simpler 
definitions of the thing being defined

 If a function calls itself (directly or 
indirectly), it's recursive



Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720



Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case



 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem



ProblemProblemProblemProblem

 Problem:  You want to walk to the door
 Base case (if you reach the door):
 You're done!

 Recursive case (if you aren't there yet):
 Take a step toward the door

Problem



 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)! 



long long factorial (int n)
{
if (n <= 1)

return 1;
else

return n*factorial (n – 1);
}

Base Case

Recursive
Case



 Given an integer, count the number of zeroes in its 
representation

 Example: 
 13007804
 3 zeroes



 Base cases (number less than 10):
 1 zero if it is 0
 No zeroes otherwise

 Recursive cases (number greater than or equal to 10):
 One more zero than the rest of the number if the last digit is 0
 The same number of zeroes as the rest of the number if the last digit 

is not 0



int zeroes (int n)
{
if (n == 0)

return 1;
else if (n < 10)

return 0;
else if (n % 10 == 0)

return 1 + zeroes (n / 10);
else

return zeroes (n / 10);
}

Base Cases
Recursive
Cases



 Given an array of integers in (ascending) sorted order, find the 
index of the one you are looking for

 Useful problem with practical applications
 Recursion makes an efficient solution obvious
 Play the High-Low game



 Base cases:
 The number isn't in the range you are looking at.  Return -1.
 The number in the middle of the range is the one you are looking for.  

Return its index.
 Recursion cases:
 The number in the middle of the range is too low.  Look in the range 

above it.
 The number in middle of the range is too high.  Look in the range 

below it.



int search (int array[],
int n, int start, int end)
{
int midpoint = (start + end)/2;
if (start >= end)

return -1; 
else if (array[midpoint] == n )

return midpoint;
else if (array[midpoint] < n)

return search (array, n,
midpoint + 1, end);

else
return search (array, n, start, 

midpoint);
}

Base
Cases

Recursive
Cases



 Write a recursive function to determine the number of digits 
in a number



 Is there a problem with calling a function from the same 
function?

 How does the computer keep track of which function is 
which?



 A stack is a FILO data structure used to store and retrieve 
items in a particular order

 Just like a stack of blocks:

Push Push Pop



 In the same way, the local variables for each function are 
stored on the call stack

 When a function is called, a copy of that function is pushed
onto the stack

 When a function returns, that copy of the function pops off 
the stack

main main

solve

Call

main

solve

factorial

Call

main

solve

Return



 Each copy of factorial has a value of n stored as a local 
variable

 For 6! :

6*factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

x = factorial(6);
factorial(6)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

720

120

24

6

2

1



 Calling functions has overhead, so calling a function 1,000 times is 
usually much slower than running equivalent code in a loop 1,000 
times

 Modern compilers, however, are relatively good at optimizing 
recursive calls

 Some of the most commonly used recursive algorithms (binary 
search and binary search tree manipulation) run in O(log n)
 The overhead is less noticeable since the function isn't called many times
 People looking for serious performance tuning will usually convert those 

algorithms to iterative implementations



 The segment of memory dedicated to the stack is limited in 
size

 Too many recursive calls will overflow the stack
 Even if your program would get the right answer with an 

unlimited stack, it will crash after what's usually tens of 
thousands of calls

 Be careful when writing recursion that might go thousands 
deep
 Another reason to stick to O(log n) algorithms



 The following recursive function adds the number from 1 up 
to n

 It follows almost the same shape as factorial()

 The sumUpTo() function works just fine for values like 100
 It will get a stack overflow on values like 500000

long sumUpTo(int n)
{

if (n == 1)
return 1;

else
return n + sumUpTo(n - 1);

}







 Scope
 Processes



 Read LPI chapter 6
 Finish Project 2
 Due Friday by midnight!
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