
Week 4 - Wednesday

 What did we talk about last time?
 Functions

Unix never says "please."

Rob Pike

 It also never says:
 "Thank you"
 "You're welcome"
 "I'm sorry"
 "Are you sure you want to do that?"

 Defining something in terms of itself
 To be useful, the definition must be

based on progressively simpler
definitions of the thing being defined

 If a function calls itself (directly or
indirectly), it's recursive

Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720

Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case

 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem

ProblemProblemProblemProblem

 Problem: You want to walk to the door
 Base case (if you reach the door):
 You're done!

 Recursive case (if you aren't there yet):
 Take a step toward the door

Problem

 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)!

long long factorial (int n)
{
if (n <= 1)

return 1;
else

return n*factorial (n – 1);
}

Base Case

Recursive
Case

 Given an integer, count the number of zeroes in its
representation

 Example:
 13007804
 3 zeroes

 Base cases (number less than 10):
 1 zero if it is 0
 No zeroes otherwise

 Recursive cases (number greater than or equal to 10):
 One more zero than the rest of the number if the last digit is 0
 The same number of zeroes as the rest of the number if the last digit

is not 0

int zeroes (int n)
{
if (n == 0)

return 1;
else if (n < 10)

return 0;
else if (n % 10 == 0)

return 1 + zeroes (n / 10);
else

return zeroes (n / 10);
}

Base Cases
Recursive
Cases

 Given an array of integers in (ascending) sorted order, find the
index of the one you are looking for

 Useful problem with practical applications
 Recursion makes an efficient solution obvious
 Play the High-Low game

 Base cases:
 The number isn't in the range you are looking at. Return -1.
 The number in the middle of the range is the one you are looking for.

Return its index.
 Recursion cases:
 The number in the middle of the range is too low. Look in the range

above it.
 The number in middle of the range is too high. Look in the range

below it.

int search (int array[],
int n, int start, int end)
{
int midpoint = (start + end)/2;
if (start >= end)

return -1;
else if (array[midpoint] == n)

return midpoint;
else if (array[midpoint] < n)

return search (array, n,
midpoint + 1, end);

else
return search (array, n, start,

midpoint);
}

Base
Cases

Recursive
Cases

 Write a recursive function to determine the number of digits
in a number

 Is there a problem with calling a function from the same
function?

 How does the computer keep track of which function is
which?

 A stack is a FILO data structure used to store and retrieve
items in a particular order

 Just like a stack of blocks:

Push Push Pop

 In the same way, the local variables for each function are
stored on the call stack

 When a function is called, a copy of that function is pushed
onto the stack

 When a function returns, that copy of the function pops off
the stack

main main

solve

Call

main

solve

factorial

Call

main

solve

Return

 Each copy of factorial has a value of n stored as a local
variable

 For 6! :

6*factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

x = factorial(6);
factorial(6)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

720

120

24

6

2

1

 Calling functions has overhead, so calling a function 1,000 times is
usually much slower than running equivalent code in a loop 1,000
times

 Modern compilers, however, are relatively good at optimizing
recursive calls

 Some of the most commonly used recursive algorithms (binary
search and binary search tree manipulation) run in O(log n)
 The overhead is less noticeable since the function isn't called many times
 People looking for serious performance tuning will usually convert those

algorithms to iterative implementations

 The segment of memory dedicated to the stack is limited in
size

 Too many recursive calls will overflow the stack
 Even if your program would get the right answer with an

unlimited stack, it will crash after what's usually tens of
thousands of calls

 Be careful when writing recursion that might go thousands
deep
 Another reason to stick to O(log n) algorithms

 The following recursive function adds the number from 1 up
to n

 It follows almost the same shape as factorial()

 The sumUpTo() function works just fine for values like 100
 It will get a stack overflow on values like 500000

long sumUpTo(int n)
{

if (n == 1)
return 1;

else
return n + sumUpTo(n - 1);

}

 Scope
 Processes

 Read LPI chapter 6
 Finish Project 2
 Due Friday by midnight!

	COMP 2400
	Last time
	Questions?
	Project 2
	Quotes
	Recursion
	What is recursion?
	Top down
	Useful recursion
	Approach for problems
	Walking to the door
	Implementing factorial
	Code for factorial
	Count the zeroes
	Recursion for zeroes
	Code for zeroes
	Searching in a sorted array
	Recursion for binary search
	Code for binary search
	Programming practice
	How does recursion work in the computer?
	Stacks
	Call stack
	Example with Factorial
	Efficiency
	Stack overflow
	Stack overflow example
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

