
Week 4 - Wednesday



 What did we talk about last time?
 Functions







Unix never says "please."

Rob Pike

 It also never says:
 "Thank you"
 "You're welcome"
 "I'm sorry"
 "Are you sure you want to do that?"





 Defining something in terms of itself
 To be useful, the definition must be 

based on progressively simpler 
definitions of the thing being defined

 If a function calls itself (directly or 
indirectly), it's recursive



Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720



Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case



 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem



ProblemProblemProblemProblem

 Problem:  You want to walk to the door
 Base case (if you reach the door):
 You're done!

 Recursive case (if you aren't there yet):
 Take a step toward the door

Problem



 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)! 



long long factorial (int n)
{
if (n <= 1)

return 1;
else

return n*factorial (n – 1);
}

Base Case

Recursive
Case



 Given an integer, count the number of zeroes in its 
representation

 Example: 
 13007804
 3 zeroes



 Base cases (number less than 10):
 1 zero if it is 0
 No zeroes otherwise

 Recursive cases (number greater than or equal to 10):
 One more zero than the rest of the number if the last digit is 0
 The same number of zeroes as the rest of the number if the last digit 

is not 0



int zeroes (int n)
{
if (n == 0)

return 1;
else if (n < 10)

return 0;
else if (n % 10 == 0)

return 1 + zeroes (n / 10);
else

return zeroes (n / 10);
}

Base Cases
Recursive
Cases



 Given an array of integers in (ascending) sorted order, find the 
index of the one you are looking for

 Useful problem with practical applications
 Recursion makes an efficient solution obvious
 Play the High-Low game



 Base cases:
 The number isn't in the range you are looking at.  Return -1.
 The number in the middle of the range is the one you are looking for.  

Return its index.
 Recursion cases:
 The number in the middle of the range is too low.  Look in the range 

above it.
 The number in middle of the range is too high.  Look in the range 

below it.



int search (int array[],
int n, int start, int end)
{
int midpoint = (start + end)/2;
if (start >= end)

return -1; 
else if (array[midpoint] == n )

return midpoint;
else if (array[midpoint] < n)

return search (array, n,
midpoint + 1, end);

else
return search (array, n, start, 

midpoint);
}

Base
Cases

Recursive
Cases



 Write a recursive function to determine the number of digits 
in a number



 Is there a problem with calling a function from the same 
function?

 How does the computer keep track of which function is 
which?



 A stack is a FILO data structure used to store and retrieve 
items in a particular order

 Just like a stack of blocks:

Push Push Pop



 In the same way, the local variables for each function are 
stored on the call stack

 When a function is called, a copy of that function is pushed
onto the stack

 When a function returns, that copy of the function pops off 
the stack

main main

solve

Call

main

solve

factorial

Call

main

solve

Return



 Each copy of factorial has a value of n stored as a local 
variable

 For 6! :

6*factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

x = factorial(6);
factorial(6)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

720

120

24

6

2

1



 Calling functions has overhead, so calling a function 1,000 times is 
usually much slower than running equivalent code in a loop 1,000 
times

 Modern compilers, however, are relatively good at optimizing 
recursive calls

 Some of the most commonly used recursive algorithms (binary 
search and binary search tree manipulation) run in O(log n)
 The overhead is less noticeable since the function isn't called many times
 People looking for serious performance tuning will usually convert those 

algorithms to iterative implementations



 The segment of memory dedicated to the stack is limited in 
size

 Too many recursive calls will overflow the stack
 Even if your program would get the right answer with an 

unlimited stack, it will crash after what's usually tens of 
thousands of calls

 Be careful when writing recursion that might go thousands 
deep
 Another reason to stick to O(log n) algorithms



 The following recursive function adds the number from 1 up 
to n

 It follows almost the same shape as factorial()

 The sumUpTo() function works just fine for values like 100
 It will get a stack overflow on values like 500000

long sumUpTo(int n)
{

if (n == 1)
return 1;

else
return n + sumUpTo(n - 1);

}







 Scope
 Processes



 Read LPI chapter 6
 Finish Project 2
 Due Friday by midnight!


	COMP 2400
	Last time
	Questions?
	Project 2 
	Quotes
	Recursion
	What is recursion?
	Top down
	Useful recursion
	Approach for problems
	Walking to the door
	Implementing factorial
	Code for factorial
	Count the zeroes
	Recursion for zeroes
	Code for zeroes
	Searching in a sorted array
	Recursion for binary search
	Code for binary search
	Programming practice
	How does recursion work in the computer?
	Stacks
	Call stack
	Example with Factorial
	Efficiency
	Stack overflow
	Stack overflow example
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

